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w It is wel l -known that many models  and methods used for  the solution of spec t roscopy  p rob l ems  of a 
s teady and quas i s teady  optical ly dense p l a s m a  can b~ t r a n s f e r r e d  with insignificant changes a lso  to radiat ion 
gasdynamics  [1-3].  At the s ame  t ime,  during the analys is  of typical  gasdynamic  si tuations (cylindrical and 
spher ica l  shock waves ,  flow around a body by a radiat ing gas  or  p l a sma ,  dynamic sk in-ef fec t  [4-6], etc.) ,  r e -  
qu i rements  often a r i s e  for  the inclusion of specif ic  models .  This,  in pa r t i cu la r ,  r e f e r s  to an extens ive  c lass  
of source  functions,  cha r ac t e r i z ed  by the p r e s e n c e  of a "cavi ty"  in the cent ra l  region of a volume of gas or  a 
p l a s m a  that is not comple te ly  t r a n s p a r e n t  and that  is radiat ing in a given range  of f requencies .  The "cavi ty"  
can a lso  be a body, sc reening  the cent ra l  pa r t  of the luminous space being considered.  Of course ,  among the 
t radi t ional  p r o b l e m s  of p l a s m a  spec t roscopy  may  be mentioned those  which requ i re  the introduction into the 
calculat ion of "hollow ~ source  functions.  A typical  example  i s tha t  of d i scharges  in iner t  gases  with the dis-  
p l acement  to the p e r i p h e r y  of the luminous zone of a toms  [7]. 

As fa r  as it is known, this c lass  of sou rce  functions up to now has not been  invest igated and the special  
fea tures  of the fo rma t ion  of spec t ra l  line contours  cor responding  to it (and also the in tegral  c h a r a c t e r i s t i c s  
found by means  of them) have not been  explained. The purpose  of this p a p e r  is an a t tempt  to fill this  gap to a 
ce r t a in  degree .  

w Let us cons ider  a c i r c u l a r  sect ion of a p l a s m a  volume (Fig. 1) in which t h r ee  concentr ic  zones can 
be distinguished with a ce r ta in  radial  line of vis ion for  de te rminacy  in tersec t ing  all t h ree  zones.  We st ipulate 
that  the m a x i m u m  of the source  function is located within the bounds of zone 2 and that zone 1 is pa r t i a l ly  t r a n s -  
pa ren t .  The points l 1 and l 3 co r r e spond  to the boundary of zone 3: Beyond its l imi ts ,  absorp t ion  and emiss ion  
of light in the f requency range  being invest igated cannot be taken into account.  The point [2 co r r e sponds  to the 
cen te r  of the chord 1112=12l 3 and l is some a r b i t r a r y  point lying in any of the th ree  zones.  

We introduce the d imens ion less  coordinate  x, 

the optical  th i cknesses  

(lIJlll2) ~ 2x ~ t ,  

x t /?  

�9 x = x ' ,  

0 0 

(n is the local  absorp t ion  coefficient) ,  andthe d imens ion less  optical  scale  ~ =Tx/V. At the point ll, x=~ = 1/2; 
at 12, x=~ =0; at 13, x=~ = - 1 / 2 ;  and at all in te rmedia te  points l, x ~ .  

We shall  use  the conventional light approximat ion  [8], for  which the t r a n s f e r  equation re la t ive  to the in- 
tens i ty  (energy br ightness)  I(v, x) has the f o r m  

(41(% x)/d~) : ~(v, x ) -  I(v, x), (2.1) 

where  r (e(v, x)/~(v,  x)) is the source  function (e is the emiss ion  coefficient) .  

It can be ver i f ied [9] that the fo rmal  solution of Eq. (2.1) has the f o r m  
t/2 

Y (~) = 2~ exp (--  ~/2) S (P (v, x) ch (% ~) d~, (2.2) 
0 
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where  ~(v,  x) =@(v, x)/B,(v 0, T);Y(T) = I(v) /B(vo ,  T). HereB(v  0, T) is the  P lanck  funct ion with f r equency  v0 
c o r r e s p o n d i n g  to  the c e n t e r  of the  l ine and to s o m e  effec t ive  t e m p e r a t u r e  T. 

In this  p r o b l e m ,  ac tual  knowledge of T and, consequent ly ,  a l so  of B(v 0, T) is not r e q u i r e d :  The P lanck  
r a d i a t o r  in the  ca lcu la t ions  p lays  only the ro l e  of a c e r t a i n  th re sho ld  ca l i b r a t i on  s t anda rd  [1]. 

w The gene ra l  p r o p e r t i e s  of the so lu t ion  (2.2) fo r  the  condi t ion  that  x ~ when the f r equency  v is  
conserve~l in the f o r m  of the a r g u m e n t  of the d i m e n s i o n l e s s  s o u r c e  funct ion ~ (v, x) a r e  s tudied in fa i r ly  g r e a t  
detai l  in [9]. It is shown by what method  the  g e n e r a l i z a t i o n  of the r e s u l t s  obtained with a cons ide r ab ly  m o r e  
s imple  approach  should be de r ived  when Eq. (2.2) is degene ra t ed  into a s imp le  in teg ra l  e x p r e s s i o n :  

1/2 

Y (~) = 2~ exp (--  ~/2) .t" ~0 (x) ch (~x) dx. (3.1) 
0 

In our  c a s e  it is a l so  na tura l  to  s t a r t  f r o m  f o r m u l a  (3.1). M o r e o v e r ,  based  on c o m p a r i s o n s  of the  d i f ferent  
types  of mode l s  [9], it is found to be poss ib l e  to  work  with s i m p l e  p a r a m e t r i c  funct ions  of  s tep,  t r anscenden t a l ,  
and t r i a n g u l a r  types ;  in this  c a s e  Y(T) is r e p r e s e n t e d  in the f o r m  of s eve ra l  s imp le  ana ly t ic  e x p r e s s i o n s .  

.A. Rec t angu la r  Model  (Fig. 2a). We d e t e r m i n e  (p (x) in the  f o r m  

{ i  O < ~ ' x ' ~ s J 2 '  
(z) = sl/2 ~ ] x I ~  s j2 ,  

s.J2 ~ I xl ~ 1/2 

and we find C = (s2-s~) -1 f r o m  the condi t ion  of n o r m a l i z a t i o n  

1/2 

.! r (x) dx = 1/2. 
0 

F o r m u l a  (3.1) g ives  

Y(~) ---- 2(s2 --  sl) -1 exp (--~/2) [sh (~sJ2) --  sh (~sl/2) ]. (3.2) 

The choice  of  the  r e c t a n g u l a r  mode l  c o r r e s p o n d s  to  the  suppos i t ion  that  the  second  zone is homogeneous ;  
i .e . ,  it l u m i n e s c e s  l ike a P l anck  r ad ia to r ,  and zones  1 and 3 conta in  only a t o m - a b s o r b e n t s .  In this  c a s e  s2-> sl, 
the boundar i e s  of zone 2 a r e  moved,  and s 1 and s 2 c an  be t ime -dependen t .  When s I ~ 0  and a s s u m i n g  that  s2< 1, 
we a r r i v e  at  the  we l l -known N e w t o n - B l e e k e r  model ,  which has  been  s tudied in detai l  in  [10]. 

B. T r i a n g u l a r  Models  (Fig. 2a). C o n s e r v i n g  the  s a m e  boundary  p a r a m e t e r s  s~ and s 2, taking into a c -  
count the  s t anda rd i z a t i on  of the funct ion cp (x), and f ixing the apex of the t r i a n g l e  at the points  Ix01 = (s I +s2) /4  
( i sosce les  t r i ang le ) ,  Ix01=si/2 and Ix0[=s2/2 (r ight~angled t r i ang les ) ,  we find, r e spec t ive ly ,  

Y(% Ix0] = (s 1 -4- s~)/4) = (16/~)(exp (--~/2)/(s~ --  sl) ~ [ch (~sJ2) d- ch (~sJ2) - -  2 ch (~(s 1 + s2)/4)]; (3.3) 

y(% lxol = s~12) = (8/~)(exp (--'d2)/(s~ --  sl) 2) [ch (~sj2) - -  ch (~sJ2) - -  (~/2)(s2 - -  sz) sh (~sJ2) ]; (3.4) 

Y(% ix01 = sJ2) = (8/~)(exp (--T/2)/(s~ --  sl) 2) [ch (~sJ2) - -  ch (~sJ2) + (~/2)(s2 --s~)sh(~sJ2)1. (3.5) 

When the t r i a n g l e  de ge ne ra t e s  into a Di rac  6- funct ion  (s~ = s 2 = s) we have 

Y(~) = T exp (--~/2) ch (~s/2). 

In the  c a s e  s =0,  when  the  5- funct ion  of the  second  zone is d i sp laced  on the  axis  of the r ad i a to r ,  we obtain  the  
we l l -known r e su l t  in [9] c o r r e s p o n d i n g  to an  infini tely th in  glowing f i lament  s u r r o u n d e d  by a l a y e r  of  a b s o r b -  
ing a toms .  

C. Stepped T h r e e - Z o n a l  Model  (Fig. 2b). We g e n e r a l i z e  the  r e c t a n g u l a r  model ,  taking into account  the  
c i r c u m s t a n c e  t h a t  zones  1 and 3 can  be not only absorb ing ,  but a l so  capab le  of  making  a f ini te  con t r ibu t ion  to 
the  e n e r g y  f lux.  We sha l l  a s s u m e ,  for  s i m p l i c i t y ,  that each of the t h r e e  z o n e s  are  h o m o g e n e o u s :  

602 



{ Ci 0 <~ I =1 < si/2, 
-- C, sl/2<~Jx[~s212, 

(p(x)-- C~ sJ2<~lxJ<~ l/2. 

o f  the  t h r e e  c o n s t a n t s  C1, C 2, and C 3, in  v iew of the  c o n d i t i o n  of  n o r m a l i z a t i o n ,  only  two a r e  independen t .  
We i n t r o d u c e  t h e  r a t i o s  TI=(CI /C2)  -<1 and v2 =(C3/C2) -< 1. We ob ta in  

Y(w) = 2 exp ( - -  w/2)/(~= + s~ ( i  - -  7~) - -  s,(l  - -  ~1))iV2 sh (w/2) + ( l  - -  ?=)sh (ws2/2) - -  ( i  - -  ~t)sh (~sJ2)]. (3.6) 

It s 1 t e n d s  to  z e r o ,  we a r r i v e  at  the  c l a s s  of  s t e p p e d  t w o - z o n a l  m o d e l s  d e s c r i b e d  in  [9].  

T r a n s i t i o n  f r o m  Yff)  d i r e c t l y  to  the  c o n t o u r  of the  r e a b s o r b e d  l ine  [(v) i s  e f f ec t ed  b y  m e a n s  of the  r e -  
l a t i o n  

w h e r e  Q(v) i s  the  n o r m a l i z e d  p r o f i l e  of the  l i ne  r a d i a t e d  by  an  o p t i c a l l y  th in  l a y e r  wi th  a m a x i m u m  at  v =%;  
W m a  x i s  the  o p t i c a l  t h i c k n e s s ,  c a l c u l a t e d  f o r  v = % .  

w Some r e s u l t s  of t he  c a l c u l a t i o n s  of t he  func t ion  Yff)  wi th  d i f f e r e n t  "ho l low"  s o u r c e  func t ions  a r e  
shown on a l o g a r i t h m i c  s c a l e  in  F i g s .  3 to  5. 

The  e f fec t  of the  m o d e l  t y p e  of  t he  s o u r c e  func t ion  q~ (x) on  the  c u r v e  of the  r e l a t i v e  e n e r g y  b r i g h t n e s s  
Yff)  with the  b o u n d a r y  p a r a m e t e r s  s 1 = 0.4, s 2 = 0.8 is  shown in F ig .  3, w h e r e  the  c u r v e s  c o r r e s p o n d  to  the  n u m -  
b e r  of t he  n u m e r i c a l  f o r m u l a s  Y(v): 1) (3.2); 2) (3.3); 3) (3.4); 4) (3.5); 5) (3.6); ~/ i=0.2,  T2=0; 6) (3.6); TI=0 ,  

T2=0.2; 7) (3.6); TI=T2=0.2. 

It can be seen that in all cases, when T2=0, the overall nature of the function Y0") is preserved. In the 
presence of a peripheral radiating zone (T2 ~ 0), with increase of optical thickness the curve Y(w) changes 
sharply: Depression of the contour [8] is stopped and the energy brightness in the central part of the line 
reaches an asymptote: 

Y0 = ~2[v~ + s ~ _ ( t -  ~ )  - -  s l  (1 - -  ~1)I .  - t  

The  " h y p e r - P l a n c k "  e x c e s s  of i n t e n s i t y  o v e r  a c e r t a i n  i n t e r v a l  A~-, p r e d i c t e d  in [9, 11], i s  noted  on c u r v e s  4 
and 6. 
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In Fig. 4, two families of curves  are  compared which reflect  the role of the pa r ame te r s  s I in shaping 
the Yff) curve for cases  of a rectangular  [solid line, formula  (3.2)] and a t r iangular  [dashed line, formula (3.3)] 
model of the source  function, in which the pa rame te r  s2= 1, i.e., as if the self-pinched zone 3 does not exist. 
This same pat tern  is close to the case of a strong shock wave or  a luminous skin- layer ,  forcing out a periodic 
absorbing shell. The p a r a m e t e r  s 1 has been varied (0; 0.2; 0.4; 0.6; 0.8). It can be seen that with increase  of 
r for the two models of q~ (x), the curve Y(~) is changed considerably.  In one case emergence  at a "Planck" or  
"hyper-Planck"  asymptote is observed (rectangular), and in the other case the curves  pass  through a maximum 
and tend to zero,  which corresponds  to s e l f - r eve r sa l  of the line with an intensity at the apices which can ex- 
ceed the Planck threshold (triangular). Applied to this same situation, the well-known pyromet r i c  method of 
Barrels [12] must  be modified. 

Figure 5 shows the resul ts  of calculations of Yff) for the case of the th ree-zona l  stepped model [formula 
(3.6)]. Curves with varying pa rame te r  ~'2 are  shown by a solid line (0; 0.2; 0.4; 0.6; 0.8) and ~/l =0.2; curves  
with varying p a r a m e t e r  1/1 are  shown by a dashed line (0; 0.2; 0.4; 0.6; 0.8) and 3/2=0.2. It c a n b e  seen that al- 
though the per iphera l  zone is twice as narrow as the central  zone (s 1 =0.4, s2=0.8), its role in shaping of the 
reabsorbed line contours is considerably more  important,  and this can be understood f rom the general  curves  
relating to the divergence of the radiant flux of a heterogeneous radiator  [9, 11]. 

It is proposed to consider  separa te ly  the problems of the direct  shaping of the line contours,  calculations 
of the integral spectra l  charac te r i s t i cs  of heterogeneous optically dense objects with "hollow" source functions, 
and also the posing of the corresponding r eve r s e  (diagnostic) problems.  

The role of the so-cal led "hollow" source  functions in problems of radiat ion gasdynamics  has been dis- 
cussed above. A distinctive feature of these functions is the displacement of their  maximum relative to the 
flux axis. The corresponding direct  problems have been considered:  The dependence was considered of the 
dimensionless energy brightness on the optical thickness of the layer ,  cer ta in  special  features  have been ex- 
plained of the shaping of the contour of the emergent  (reabsorbed) line, the causes  of the occur rence  of "hyper-  
Planck" surpluses of the energy brightness,  etc. Below, one of the methods is proposed for est imating those 
pa rame te r s  by which the dimensions and shape of the "cavity" are  determined with the source  function. 

We shall confine ourselves  to es t imates  of the boundary pa rame te r s  s 1 and s 2 in the range of maximum 
optical th icknesses  of the layer  which a re  the most  important f rom the applied point of view [13, 3]: 102-  < 
"rmax < 103. In many problems of radiat ion gasdynamics  tt is important  to determine not so much s 1 and s 2 
individually, but ra ther  the i r  difference As =s2--si ,  since this quantity in explicit fo rm occurs  in both the 
radiation t r ans fe r  equation and also in the energy equation (the t e r m  with the divergent radiation flux) [14]. 
We also note that because of the quite large values of rma  x stated above, the initial line profi le can be as-  
sumed with good accuracy  to be dispersed.  

The success  of the solution to the problem posed is determined in the main by the choice of the appro-  
pr iate  functional (quasiinvariant)H, which should be of low sensit ivity to the quantity Vma x within a g ivenrange  
of AVma x and to the shape of the 'qmllow" source  function profile,  each of the halves of which is charac te r ized  
by the width As. In addition, it is important that H should be fixed experimental ly without special  difficulties 
and with acceptable accuracy.  The change of H with a variat ion of s 1 when the p a r a m e t e r  s 2 is fixed and a var i -  
ation of s 2 when the pa rame te r  s~ is fixed should be as identical as possible.  

The functional H of this type cor responds  completely to the stated requi rements :  The region of the self-  
r eve r sa l  trough of the emergent  line contour, r e fe r red  to the magnitude of the frequency range which divides 
the s e l f - r eve r sa l  maxima,  is integrated. We note that a s imi la r  functional was considered in [15] in connection 
with another problem.  
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Figure  6 shows the function Hffmax) ,  calculated on a compute r ,  for  the case  when s2=0.8 and s I in- 
c r e a s e s  f r o m  0.1 to 0.7; Fig. 7 shows the s ame  function, but for  the conditions that  s I =0.2 and s2 inc rea se s  
f r o m  0.3 to 0.9. 

I t  can  be seen  immedia t e ly  f r o m  the r e su l t s  of the calculat ion given that the functional H (As) can be 
r ecommended  fo r  the purpose  of the diagnost ics  of p l a s m a  and hot gas  s t r e a m s  in the p r e s e n c e  of "hollow" 
source  functions.  In this case ,  smal l  values  of the d i f ference  As can be found m o r e  accura te ly ;  however ,  even 
for  the range  of values  0.5-----As ___ 0.9 the sy s t ema t i c  e r r o r  of the de te rmina t ion  does not exceed 5-10%. 

The authors  thank R. I. Soloukin for  i n t e re s t  in the pro jec t ,  P r o f e s s o r  S. Suckewer (USA, Pr ince ton  Uni- 
vers i ty)  for  useful d i scuss ions ,  and V. V. Pikalov for  a s s i s t ance  in the ca lcula t ions .  
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